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1. Introduction

By mimicking circulatory systems found in many living organisms, microvascular materials have been the focus of re-
newed interest recently for their potential in providing a wide range of added functionality to polymers and polymeric ma-
trix composites (PMC). Some of these multi-functionalities include active cooling [1,2], and autonomic healing [3,4]. Beyond
the need to use materials more efficiently, this renewed interest in multifunctional microvascular materials can also be
attributed to recent advances in manufacturing techniques. Traditionally, the writing process of the microvascular network
is in 2D, and 3D scaffolds by superimposing 2D layers [5]. However, new methodologies are being explored such as the omni-
directional printing (ODP) technique, where a 3D structure is extruded within a gel that serves as a support [6]. Another ap-
proach proposed recently in the creation of fiber-reinforced composites uses sacrificial fibers to create the embedded
network by depolymerization and volatilization [7]. These techniques allow for the creation of complex 3D embedded net-
works of microchannels in polymeric and PMC components.

This paper focuses on the design of microvascular materials for active cooling applications. The computational design of
this class of materials is an intricate process, due to the large number of design variables (e.g., network topology, channel
diameters) and the multiple competing objective functions that define the design process. The computational design tool
to be developed must be capable of capturing the trade-offs between these competing objectives. For example, microvascular

* Corresponding author. Present address: EPFL ENAC IIC LSMS, Laboratoire de Simulation en Mécanique des Solides, Bat. GC A2 505, Station 18, CH-1015
Lausanne, Switzerland. Tel.: +41 21 693 24 18; fax: +41 21 693 63 40.
E-mail addresses: alejandro.aragon@fulbrightmail.org (A.M. Aragén), rsaksen2@illinois.edu (R. Saksena), brian.kozola@navy.mil (B.D. Kozola),
geubelle@illinois.edu (P.H. Geubelle), ktc@illinois.edu (K.T. Christensen), swhite@illinois.edu (S.R. White).

0021-9991/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2012.07.036


http://dx.doi.org/10.1016/j.jcp.2012.07.036
mailto:alejandro.aragon@fulbrightmail.org
mailto:rsaksen2@illinois.edu
mailto:brian.kozola@navy.mil
mailto:geubelle@illinois.edu
mailto:ktc@illinois.edu
mailto:swhite@illinois.edu
http://dx.doi.org/10.1016/j.jcp.2012.07.036
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

A.M. Aragén et al./Journal of Computational Physics 233 (2013) 132-147 133

networks designed for flow efficiency are likely to have a topology that is very different from those designed for structural
integrity or thermal control. Because of the computationally intensive nature of the optimization methodology, we are not
only interested in the optimized network topologies, but also in obtaining an efficient and accurate evaluation of the objective
functions and constraints involved in the optimization. Several approaches can be used to design the microvascular networks
embedded in these materials. These include (i) semi-analytical approaches; (ii) gradient-based search methods; and (iii) evo-
lutionary algorithms. Semi-analytical approaches can be used to solve network optimization problems that do not involve a
large set of optimization variables. These methods often require a priori information about the optimal solution. Constructal
theory [8,9] lies in this group, and it has been used for the solution of simple problems [10-12]. Within gradient-based search
techniques, topology optimization has been used recently to optimize flow networks [13]. This method involves design vari-
ables that are continuous and often leads to an optimal solution that is local, so finding a global optimal solution is not guar-
anteed. Evolutionary algorithms (EAs) comprise the last category by borrowing some concepts from biological evolution. As a
subset of this group, genetic algorithms (GAs) [14,15] are population-based algorithms that improve a set of candidate solu-
tions throughout their evolution, by applying genetic operators selection, crossover and mutation. The survival of the fittest
takes place through selection, preventing the worst candidates to be nominated for reproduction. The distinction among indi-
viduals is conducted through the computation of one or more objective functions, which quantitatively describe how fit the
individuals are to solve the problem. Through the crossover operator, new candidate solutions are created by mixing the infor-
mation of those nominated through the selection process. The mutation operator modifies slightly the features of an individ-
ual and could introduce new features to the existing solutions. GAs offer several advantages compared to the other two
aforementioned methods. GAs can use discrete or continuous variables, and they search the entire decision space, so optimal
solutions found are likely to be global optima. Furthermore, there is no need for a priori knowledge about optimal solutions,
but this information can be used to obtain a starting population with those features in the so-called knowledge-based GAs.

The simple genetic algorithm (SGA) [14] is one of the most common algorithms in this group and is used with a single
objective function, usually determined as a linear combination of weighted objectives if the optimization is on several objec-
tives. In multi-objective genetic algorithms (MOGAs) [16], individuals are compared in all objective functions using a Pareto-
optimality procedure. In this context, an individual is better than another if it is better in at least one objective function and it
is not worse in the rest. This selection mechanism, which has been borrowed from the field of economics, leads to a powerful
method for obtaining an optimal front (called Pareto-optimal), where all individuals lying on it are optimal solutions to the
multi-objective optimization problem. By supplementing the MOGA with a mechanism that deals with constraints, a pow-
erful methodology for multiple-objective constrained optimization is obtained. This is the method chosen in our work be-
cause it allows us to visualize the trade-offs between conflicting objective functions. The GA-based optimization tool can
be used to study multi-physics optimization problems for which the objective functions involved describe different physical
phenomena. In the context of active cooling applications, the temperature field is obtained when the polymeric component
is subjected to thermal loads. To obtain the temperature distribution in the microvascular material, one needs to solve for the
temperature field in both the solid and fluid domains. This problem is referred to in the literature as the conjugate heat trans-
fer problem. However, this approach is not straightforward because of the coupling that exists between fluid and solid do-
mains if a non-monolitic solution approach is used. This means that an iterative approach is needed to obtain a converged
value of the temperature at solid-fluid boundaries. Because the MOGA typically requires thousands of objective function
evaluations, and the total CPU time is directly proportional to the cost of these objective functions, we resort to a simplified
formulation that describes the convective heat transfer in the microchannels by collapsing them to line heat sinks (or heat
sources) over linear segments and solving for the heat equation only in the solid. Therefore, the temperature distribution in
the solid domain will have a discontinuous gradient across the microchannels.

The multi-physics optimization of microvascular materials for 2D problems in the context of active-cooling applications
has been presented by Aragén et al. [2], who coupled the multi-objective constrained optimization framework described in
[17] with a physics solver based on a generalized finite element method described in [18]. The application of the resulting
multi-physics optimization tool to several thermal problems demonstrated the existence of well-defined Pareto-optimal
fronts for objective functions related to the void volume fraction and flow efficiency of the embedded network, its impact
on the maximum temperature predicted in the microvascular component, and the associated surface convected energy. This
paper extends the methodology presented in [2] to fully 3D networks, motivated by recent advances in the manufacturing
processes, which allow for the creation of complex 3D network topologies [6,7], and by the desire to eliminate some of the
assumptions behind the 2D thermal models of the microvascular actively cooled component [2].

This paper is organized as follows: Section 2 states the optimization problem and presents the mathematical model used
for representing the microvascular material. Section 3 presents a brief overview of GA optimization scheme. The objective
functions and constraints used in conjunction with the GA are defined in Section 4, followed in Section 5 by a validation
study of the thermal field when these materials are used for active cooling applications. Finally, the application of the opti-
mization framework for the design of 3D microvascular networks follows in Section 6.

2. Microvascular network representation

Consider the mathematical model of a biomimetic material shown in Fig. 1. An open domain Q c R?, with boundary
I':=Q - Q, represents the polymeric component. The optimization process starts from a microvascular network template
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Fig. 1. Mathematical model of a biomimetic polymeric component. A domain Q embeds a microvascular network represented by a graph G. Inflow and
outflow vertex sets S and 7, respectively, are also shown in the figure.

[17,2], a reference structure that contains every possible microchannel considered in the design. Mathematically, the net-
work template is represented by a graph G := (V, &), where each edge e € £ represents a channel of the network and each
vertex v € V represents the possible location of a microchannel endpoint. Thus, a spatial coordinate x, ¢ A ¢ Q is associated
with each vertex v, where A := {Zizlziei | zi € Z} is a three-dimensional point lattice and e; represents the ith component of
an orthogonal basis of R>. Restricting the location of the vertices to a point lattice reduces considerably the number of pos-
sible network topologies within the polymeric component. Other properties assigned to vertices include pressure
p, : v(V) — R and mass flow rate m, : v(SU7) — R,SN7T =, where S and 7 represent inflow and outflow vertex sets,
i.e, {S,T} CV(G). Because of mass conservation, the total mass inflow rate ;s := Y, ¢/, equals the total mass outflow rate
my :=>,.,M,. Properties are also assigned to the edges of the graph, including the microchannel diameter D, : e(§) — R,
length L, : e(£) — R, and mass flow rate ri1, : e(€) — R.

These microvascular materials are often created by extruding a fugitive ink on a polymeric substrate. Let D = {Di}ﬁ-‘:1 be
the set of discrete diameters used in the optimization process. This set includes the diameters prescribed by the manufac-
turing process, i.e., the diameter of the nozzles used to extrude the fugitive ink. It also includes D, = 0, which represents the
absence of a microchannel to allow networks to change in topology from that of the network template. During the optimi-
zation process, each microchannel e € £ of a candidate solution is assigned a diameter D, € D in order to optimize a set of
objective functions ® = {¢;}}",, subject to a set of constraints ¥ = {y;};_,. Each candidate solution created during the GA
optimization process can be thought of as a mapping, a function f : G — G C G, where G := (V/, £') may contain fewer chan-
nels, i.e,, & C &. Thus, the degree of a vertex v in the candidate solution, denoted deg (V') and defined as the number of inci-
dent edges on the vertex, may be smaller than the degree of the corresponding vertex in the network template g, i.e.,
deg (v € V) < deg (v € V). It is interesting to note that there are k! possible network configurations in this optimization pro-
cess. Yet many of these topologies are considered unfeasible because there is no solution for the flow problem, as explained
in the Section 4. In other words, their corresponding graphs are disconnected, which means that there is at least one pair of
vertices v;,v; € V'(¢) for which a path cannot be created through the existing edges £'(¢'). A disconnected graph therefore
contains two or more connected components.

3. Multi-objective constrained genetic algorithms

Genetic algorithms are chosen as the underlying optimization technique because of their advantages with regard to other
methods used in search and optimization. As a subset of a broader category of evolutionary algorithms (EAs), genetic algo-
rithms are population-based methods where candidate solutions develop towards better configurations for the problem con-
sidered throughout an evolution process. GAs do not require any information about optimal topologies, a main advantage
when comparing the method with other approaches used for optimization such as constructal theory [8,10,19]. Usually,
the starting population of a GA is created randomly, yet any a priori knowledge about optimal features can be incorporated
into this initial population, procedure known as a knowledge-based GA. After the creation of the initial population, GAs usu-
ally start the evolution over a specified number of generations t,.x, unless other criterion is used to obtain a measure of con-
vergence. More precisely, GAs can evolve indefinitely introducing new features to individuals in the population. GAs do not
guarantee the convergence to optimal solutions at any value of t,,.x, but they search the entire decision space, a main advan-
tage when comparing GAs to gradient-based search techniques like topology optimization [20,21,13]. Also, GAs do not re-
quire any gradient computation, and they can be used as long as a quantitative measure of the fitness can be assigned to
the individuals in the population. Additionally, GAs can handle problems that are encoded with both discrete and continuous
variables. As explained in Section 2, the optimization problem in this work assigns discrete values to the diameters of the
microchannels of candidate solutions, making this a discrete optimization problem.



A.M. Aragén et al./Journal of Computational Physics 233 (2013) 132-147 135

At each generation t of the evolution of the GA, the genetic operators selection, crossover and mutation are applied to gen-
erate the population at generation t + 1. The selection operator can be thought of as a mechanism that eliminates those indi-
viduals with low fitness so that they are excluded in successive generations, thus fulfilling Darwin’s natural selection.
Through the crossover operator, selected individuals exchange their features to produce new individuals. As a result, the cre-
ated individuals contain features found in their parents. Finally, the mutation operator slightly modifies the characteristics of
the newly created individuals and can bring new features not present in their parents nor in the entire population. In this
work, tournament selection, uniform crossover and bitwise mutation are used as genetic operators [14,15]. It is worth noting
that bitwise mutation can only be applied if k = 2. If more diameters are considered, Gaussian mutation can be used as the
mutation operator [17]. The simple GA [14] employs only the genetic operators mentioned above to determine the popula-
tion at generation t + 1. However, when dealing with multiple objective functions, it is better to use a Pareto selection mech-
anism to determine the population at generation t + 1. Through this procedure, individuals are compared in all objective
functions simultaneously, and dominated candidates are likely to be discarded in subsequent generations. When comparing
two contenders, the dominated individual is worse in at least one objective function while not being better in the rest. The
concept of dominance is due to Pareto [22] from the field of economics.

Having the genetic operators for the creation of new candidate solutions and the Pareto selection mechanism to deal with
multiple objectives, the remaining challenge involves the consideration of constraints. The explanation given in the previous
paragraph deals with the objective function space. Similarly, we can apply the same ideas to a space dealing with constraints,
thus better individuals can be thought of being “less unfeasible”. However, this approach works only when dealing with
unfeasible individuals. If at a particular generation t, the population is composed of both feasible and unfeasible candidates,
the strategy adopted in this work to determine the better of two contenders is as follows: If one individual is feasible and the
other is not, the feasible individual is selected. If both individuals are unfeasible, select the less unfeasible one based on the
values of the constraints. Finally, if both individuals are feasible or if an individual cannot be selected because they have the
same constraint values, select the best individual in the objective function space. In this work, the nondominated sorting
genetic algorithm Il (NSGA-II) [23] with the addition of a constraint space is used as the multi-objective constrained genetic
algorithm. For more information, refer to [17,2].

The evolution of a GA requires a large number of evaluations, thus obtaining meaningful results can be computationally
demanding. However, the evaluation part of the GA is embarrassingly parallel, which means that candidate solutions can be
evaluated in different processes independently. This property of the GAs make them suitable for distributed-memory ma-
chines. The algorithm used in this work adopts a master-slave approach, where the master process sends the individuals
so that they can be evaluated independently by the slave processes, and then the master process collects the results after-
wards. Close to ideal speed-ups are obtained using this approach. A description of the parallelization scheme adopted in this
work is given in [2].

4. Design objectives and constraints

This section describes the objective functions and constraints taken into account in the 3D microvascular network design
problem.

4.1. Void volume fraction

The void left by the microvascular network has a direct impact in the mechanical properties of the resulting polymer. It is
desired to keep the void volume fraction to a minimum in order to reduce the network’s impact on the stiffness and strength
of the material. The void volume fraction objective function is defined as a function ¢, : £'(¢') — R:

o DeerleDs
by 1= ML (1)

where, in other words, the volume of the network is normalized by the volume of the polymeric component V.
4.2. Flow efficiency

Flow efficient networks will have a configuration such that the energy needed to drive the fluid through the microchan-
nels is kept to a minimum. The quantitative evaluation of the flow efficiency is carried out through the computation of the
maximum pressure drop in the network. Assuming laminar flow, a reasonable conjecture for the range of applications of
these materials [24], the pressure drop in microchannel e’ € £ can be expressed through the Hagen-Poiseuille’s law:

128VvLy .
Apy = nDﬁ e, )

e

where v is the kinematic viscosity of the fluid. Using Eq. (2) to express the mass flow rate at microchannel endpoints gives a
total of 2|&'| equations, which are used to assemble the system of linear equations Kp = . In this system, K is the network
characteristic matrix, p is the network pressure vector and ri1 is the network mass flow rate vector [25,17]. This system is
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solved after applying flow boundary conditions, which include prescribed mass flow rate at inflow vertices v’ € S and pre-
scribed pressure at outflow vertices v € 7. Then the flow efficiency objective function is defined as a function ¢; : V'(¢') — R
such that

¢p = max |p, —py |. 3)

Vi,VJEV 1 ]

More precisely, the computation of the maximum pressure drop is performed in each connected component of the graph &,
each one with its own flow boundary conditions. That is, it is possible that during the mapping process that creates a new
candidate solution, a disconnected network with two or more connected components is created. As long as those connected
components have valid boundary conditions for the flow problem, the networks are considered as feasible and the compu-
tation of the maximum pressure drop is carried out component by component.

4.3. Thermal field

By obtaining the temperature field in the polymer, objective functions can be defined to obtain highly efficient networks
for active cooling applications. Consider the boundary of the domain I with outward normal n, partitioned in regions I'y, I'g,
and I'y,, which correspond to regions with applied Dirichlet, Neumann, and Robin boundary conditions, respectively. These
regions are mutually exclusive, thus I', NI’y n I, = 0. Also, the closure of their union defines the entire boundary of the poly-
meric compound, i.e., I' = I', UT'; UT},. It can be shown through an energy balance [26] that the heat rate per unit length g,
in the wall of microchannel e is given by

. du
4. = mecpﬁ7 (4)

where u denotes temperature, ¢, the specific heat of the fluid, and &, the local axial coordinate of the channel. By adopting Eq.
(4), several simplifying assumptions have been made, including a fully developed temperature profile and a constant heat
rate along the wall of the channel. Network microchannels can be collapsed to 1D line segments due to their high aspect
ratios and the small diameters used. Thus, Eq. (4) allows us to consider the cooling effect of the microchannels as heat sinks
over their collapsed lines. The steady-state thermal boundary value problem is given as follows: Given fluid density p and
fluid specific heat ¢, constants, ambient temperature u,,, the thermal conductivity tensor k : Q — R* x R?, the heat source
f:Q — R, heat transfer coefficient h : ', — R, and prescribed heat flux g : I’y — R, find the temperature field u : Q — R such
that

V- (kVu) +f = (X — X.)cpm, - VU on Q, (5)
with m, = r.e;,, and boundary conditions

u=u onT,, (6)

kVu-n=q only, (7)

kVu-n=h(u, —u) on I}. (8)

In Eq. (5), the term on the right hand side implies summation over all network microchannels and the Dirac delta function
allows us to represent the 1D microchannels within the 3D computational domain.

For the weak formulation, let &/ = {u | uln =2} ¢ H'(Q) be the set of trial solutions for the temperature field and
V={v|vn=0}C Hé(ﬁ) be the variation space. The weak form of the problem is: Given p, ¢,, u..f, h, k,q, u as before, find
u € Y such that

a(w,u) +aw,u)r, = W,f) + (W, Q)r, + (W,ux)r, YWEeV, 9)
with bilinear and linear forms
aw,u) = / (VW - (KVU) + WS(X — Xe)cpIine - VU )dQ, (10)
Q
a(w,u)r, = | whu dr, (11)
I
w.)= [ wraa, (12)
Q
W,q)r, = | wqdl, (13)
Iq
(W, ue)r, = | whu, dI'. (14)
I

An approximate temperature distribution in the material u"(x) is obtained by solving Eq. (11) with a finite element discret-
ization of the domain Q" ~ Q. Various thermal efficiency objective functions can then be defined, such as the average tem-
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perature over the polymeric component, the thermal energy stored, or even the temperature gradients if the stresses pro-
duced by the thermal field are of interest. In the examples presented in this paper, we adopt the maximum temperature
objective function ¢; : Q" — R:

¢r = maxu'(x), VxeQ (15)

4.4. Connectivity constraint

The objective functions introduced above are computed only for networks for which a solution to the flow problem, as
outlined in Section 4.2, can be obtained. When the candidate solutions are allowed to change in structure throughout the
optimization process, many of the subgraphs G of the graph G that represents the network template become unfeasible.
When a solution to the flow problem cannot be computed, the candidate solution is marked as unfeasible. The connectivity
constraint is defined as a function . : £(¢') — R such that

(16)

{1/\5’(@’)\ if ¢ is disconnected,
l//c = .
0 otherwise.

Because y, is inversely proportional to the number of edges in the candidate solution, the optimization process pushes
unfeasible individuals towards a known valid topology, that of the microvascular network template.

5. Validation study

The numeric solution of Eq. (11) is now compared with experimental measurements. Three sets of experimental results
are used in this study: (i) the surface temperature of the polymeric component obtained by infrared (IR) imaging of the spec-
imen [1]; (ii) the temperature of the fluid through the two-dye laser induced fluorescence (LIF) technique [27]; and (iii) the
mass flow rate in the microchannels via the microscopic particle image velocimetry (¢—PIV) technique [24]. The experimen-
tal results used in this validation study for the infrared imaging of the polymer surface and the two-dye LIF were obtained
almost simultaneously, whereas mass flow rates were measured at a different time.

The measurement of the temperature field in the polymer is accomplished by obtaining images of the specimen with the
aid of an IR camera. The base of the specimen is placed on a copper plate, which in turn lies on a resistive heater that is kept
at constant temperature using a feedback controller. Thermally conductive grease is laid along the interface between the
copper plate and the fin. The IR camera is utilized to capture the temperature distribution in the surface of the fin that con-
tains the microvascular network. The specimen used in the experiments, which consists of an epoxy polymeric fin with an
embedded twelve-channel microvascular network, is illustrated in Fig. 2 and can also be found in Fig. 1d of Kozola et al. [1].
Attachment nozzles are placed at the diverging and converging points of the fanning manifolds to provide the network with
inlet and outlet locations. The microchannels have roughly a diameter D, = 410 pm. The height of the specimen is 19.5 mm,
and its thickness is 3.5 mm. The portion of the fin where the microchannels are parallel to the heated stage measures
18.4 mm. The mass flow rate in the individual microchannels is measured employing the p— PIV technique [24]. This method
is able to determine the velocity field in a plane spanning the full diameter of a microchannel. The experimental setup for
this technique consists mainly of a laser and a camera. In order to obtain the velocity field in a channel, a solution of deion-
ized water mixed with polystyrene microspheres containing a fluorescent red dye is driven through the network. By employ-
ing an optical filter, the camera captures the fluorescent light emitted from the particles. By cross-correlating two
consecutive images taken by the camera at a specified time interval, the displacement (and therefore the velocity) field
can be fully determined, and thereby the mass flow rate through the microchannel.

Finally, the temperature of the fluid is determined by the two-dye LIF technique [27]. The LIF employs a laser and two
cameras with appropriate optical filters that are used to capture the emissions from their corresponding dye. One of the dyes
is temperature sensitive, whereas the other is temperature insensitive. However, both dyes are sensitive to the incident en-
ergy of the laser, hence to remove the effect of variation in incident energy, the ratio of the images taken by the two cameras
is used. The setup is calibrated against known temperatures in a water bath that is used to maintain constant temperature,
which is additionally measured by a thermocouple.

Fig. 2. Fin specimen used in the validation study consisting of twelve microchannels that fan from inlet and outlet network locations.
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Fig. 3(a) summarizes the results of the comparison between numerical predictions and experimental measurements of
the temperature field for the specimen illustrated in Fig. 2. The abscissas show the surface temperature along the centerline
of the specimen, and the ordinates the normalized coordinate perpendicular to the heated stage. For the first experimental
measurement, no flow was driven through the microvascular network. For the other two experimental results, a solution of
deionized water with the two dyes used in the LIF technique was pumped through the twelve channels with total mass flow
rates 1is; = 1 g/min and s, = 2.5 g/min, and the temperature measurements were obtained after achieving steady-state
conditions. As expected, the temperature in the specimen drops with increasing values of the mass flow rate.

The fin equation, a simplified 1D equation that describes the energy balance that exists between the heat conducted
through the fin and the heat convected to the surrounding fluid, can be used to obtain the film coefficient from experimental
results. The equation has the form

du_w

e 7K—A(u—um), (17)

where P and A are the perimeter and the area, respectively, of the cross section in contact with the copper plate, x is the coor-
dinate normal to this cross section, k is the conductivity of the polymeric material and h is the heat transfer coefficient (or
film coefficient) that characterizes the heat convection between the fin and the surrounding air with temperature u,.. Bound-
ary conditions include fixed temperature at the base of the fin (in contact with the copper plate) u|,_, = i1, and a convective
boundary condition at its free end (i.e., at x =L = 19.5 mm) —x(du/dx)|,_; = h(u(L) — u.,). With these boundary conditions,
the solution to the fin equation is given by

-~ fin equation

— numerical, no flow
experimental, no flow

¢ numerical, 775

A experimental, g

+ numerical, 1o

<

:'i 0.5 F experimental, 7o
=

290 325 360

304.15

u, [K]

— 3 elements
— 6 elements
— 12 elements
— 24 elements

0 z, [mm]
(b)

Fig. 3. (a) Temperature profiles obtained at the centerline of the specimen shown in Fig. 2, showing the experimental temperature measurements obtained
by infrared imaging, the numerical solutions, and the results of the fin equation. (b) Temperature profile through the thickness obtained numerically at the
top of the specimen for meshes with different thickness discretizations.
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u(x) — . cosh B(L —x) + (;‘—K> sinh (L — x)

U— U cosh L + (ﬁi) sinh L

(18)

hp
B= 1\

With i =353.3K and an environmental temperature u. =296.4K, it was found that a heat transfer coefficient
h = 8.1 W/m? K matches closely the experimental results, as shown by the corresponding dashed curve in Fig. 3(a).

A finite element model of the central portion of the domain that contains the straight microchannels, i.e.,
18.4 x 19.5 x 3.5 mm?, is created to obtain the numerical temperature predictions. In the absence of flow, the boundary con-
ditions for the computational model include a temperature i = 353.3 K, prescribed at the base of the model, and convective
boundary conditions along the top and along the two major surfaces. Insulated boundary conditions, i.e., ¢ = 0, are applied to
the remaining surfaces of the computational model. For the convective boundary conditions, the environmental temperature
is the same as the one used for the fin equation, and a value h = 8.7 W/m? K for the heat transfer coefficient was obtained by
matching the measured experimental temperature at the top of the fin. Thus, in the absence of flow, the numerical results
match closely those of the fin equation and the experimental results, as illustrated in Fig. 3(a).

A mesh convergence study is carried out by creating four structured meshes of eight-node brick elements over the 3D
grids {40 x 48 x 2V 3}3 . In other words, the four meshes have 40 elements along the length 18.4 mm, 48 elements along

i=0
the length 19.5 mm and either 3, 6, 12, or 24 elements through the thickness of 3.5 mm. For the four meshes, measurements
of the temperature across the thickness over the top of the specimen are reported in Fig. 3(b). The figure shows that consid-
ering six elements is enough to capture the thermal effects through the thickness of the specimen. It also illustrates that the
temperature at the extreme sides of the specimen, which are the locations where the temperature measurements can be
obtained experimentally by infrared imaging, does not vary much, even when considering only three elements across the
thickness.

For the numerical predictions considering the effect of the flow through the microvascular network, the mass flow rate in
each microchannel is predicted by taking into account the actual geometry of the specimen. In other words, each microchan-
nel length is measured and its corresponding mass flow rate is obtained from Eq. (2). Also, the temperature of the fluid at
inlet locations is prescribed in the computational model with the values reported in Table 1, which were obtained experi-
mentally by the two-dye LIF technique described above. The temperature values of the fluid at other inlet locations were
linearly extrapolated from those given in the table. The numerical results that take into account the effect of the flow are
also given in Fig. 3(a). It can be seen that the numerical curves follow the same trend as the experimental ones, which means
that the temperature reduces as the mass flow rate increases. Also, both numerical and experimental results share the same
order of magnitude, but there are some discrepancies between them. The first source of discrepancy is associated with the
experimental error related to the temperature measurements at inlet locations and with the interpolation/extrapolation of
the temperature values given in Table 1 for the other eight microchannels. Another source of discrepancy is due to the depar-
ture of the predicted flow distribution across the twelve microchannels used for the numerical simulations from the actual
flow field in the experiments. Indeed, as shown in Fig. 4(a), a substantial variability is observed experimentally (using the
M—PIV technique), with some channels (especially the center ones) carrying more of the flow than others. Taking that var-
iability into account in the numerical predictions leads to the results shown in Fig. 4(b). As apparent there, the differences
observed in the temperature profile due to the variability in mass flow rate are negligible for the case rs; = 1 g/min. There-
fore, the remaining discrepancy is probably associated with errors in the inflow temperature, emphasizing the need for the
simultaneous measurement of the fin surface temperature and the inflow temperature of the cooling fluid in every
microchannel.

6. Network optimization results

This section presents the results obtained by applying the optimization framework for the design of 3D microvascular
polymeric components to two different applications. The first application consists of the design of a periodic microvascular

Table 1

Fluid temperature values obtained by the two-dye LIF technique, given in Kelvin, measured at the start of the
straight portion of four microchannels for the specimen illustrated in Fig. 2. Channel 2 is the closest channel to
the heated stage.

Channel Mass flow rate rm, [g/min]
1 2.5

2 3124 311.9

4 309.5 305.8

7 305.2 305.1

8 303.2 297.0
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Fig. 4. (a) Predicted and measured mass flow rate values for each of the twelve channels for a total mass flow rate riis; = 1 g/min. (b) Temperature profiles
at the centerline of the fin specimen showing numerical and experimental results for the same mass inflow rate, and the experimental curve in the absence
of flow for reference.

cell that is part of a larger polymeric component, e.g., a thin wall structure used for high temperature applications. The sec-
ond application is motivated by the 2D optimization problem involving two localized heat sources discussed previously in
[2].

6.1. Periodic microvascular cell

Consider a cubic domain Q = a® with a = 10 mm, as displayed in Fig. 5. The figure shows a part of the microvascular net-
work template G, which contains 1946 microchannels. With a diameter set D[um] = {0, 100} used in the optimization pro-
cess, there are 2'%*® possible network configurations. As mentioned previously, even though many of these topologies are not
feasible because they result in disconnected networks for the flow problem, the number of feasible structures is extremely
large. The network template consists of channels with length L, = 1 mm aligned over an n? grid (with n = 8), with a total of
3n(n + 1)* microchannels, plus two more that link inflow and outflow with the rest of the network. Thus, the network tem-
plate has roughly a 1 mm cover from each of the six surface domain boundaries. A single inflow and a single outflow are
located at the bottom surface and are displayed using arrows in the figure. Flow boundary conditions comprise a prescribed
mass inflow rate s = 1 g/min at the inlet and zero pressure at the outlet. The fluid used as coolant is water, with kinematic
viscosity v = 1.05 x 10~® m?/s and specific heat c, = 4185.5 J/kg K. Results are reported only for constant inflow, so that the
mass inflow rate does not change in all individual evaluations (see reference [2] for further details). For the heat boundary
value problem, a thermal conductivity value of k¥ = 0.3 W/mK is used for the polymer. A uniform heat flux g = 3 kW/m? is
applied to the top surface and the bottom surface has a prescribed temperature ti = 273.15 K, which is also the temperature
of the incoming fluid. Thus, in the absence of flow the temperature field has a linear variation in the z coordinate, with a
maximum temperature u,.x = 373 K over the top surface. The remaining surfaces have a periodic boundary condition, thus
defining a unit microvascular cell in the x and y directions, as displayed by the coordinate axes in the figure. The cubic do-
main is discretized with a structured finite element mesh, consisting of 20 x 20 x 20 = 8000 eight-noded brick elements and
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Fig. 5. Schematic of the periodic microvascular cell problem with cubic domain Q = a®and part of the microvascular network template G. A single inflow
and a single outflow are displayed in the figure with arrows. A uniform heat flux g is applied at the top surface, and a temperature u is prescribed at the
bottom surface. The remaining surfaces have periodic boundary conditions, thus defining a unit cell periodic in the x and y directions.

a total of 9261 nodes. Note that a matching finite element mesh is used, thus the microchannels of the network template lie
along the edges of finite elements in the mesh. By analyzing the grids used for discretizing the domain and for outlining the
microvascular network template, it can be inferred that each microchannel is surrounded by eight brick elements.

The optimization problem is then stated as:

minimize ® = {¢,, ¢;, ¢1},
such that y, = 0.

The problem is then optimized with a population size | P |= 1000. The Pareto-optimal front for this problem is displayed in
Fig. 6 at generation t = 10000. Selected candidate solutions, labeled in the figure and marked with ¢, O, and O symbols, are
presented in Fig. 7. The front is projected into three orthogonal planes to ease its visualization. The projections show a well-
defined surface, with some individuals isolated from the main population, e.g., those marked with <>, O symbols. In Fig. 7, the
upper row shows the temperature field, whereas the lower row shows the corresponding network and flow field. In the low-
er figures, the arrows that represent the flow are color-coded and scaled according to their flow magnitude.

The candidate solution that minimizes the value of ¢,, marked with a ¢ symbol in Fig. 6, is presented in Figs. 7(a) and (d).
This is the most optimal solution for this objective function, as the inlet and the outlet are connected using the least number
of microchannels, as revealed by Fig. 7(d). On the other hand, this solution is the worst for minimizing the maximum tem-
perature objective function ¢, reducing it by only 1 K from the configuration without flow. Note that this individual is iso-
lated in the front from the main population. The individual that maximizes the flow efficiency is shown in Figs. 7(e) and is
marked with a O symbol in the Pareto-optimal front of Fig. 6. The network is very dense, so that its topology resembles that
of the microvascular network template. After dividing the flow into four paths close to the inlet, the magnitude of the flow is
reduced and rapidly becomes negligible close to the upper surface. The maximum temperature for this solution is reduced by
approximately 54 K. Finally, the candidate solution that minimizes ¢, corresponding to Figs. 7(c) and (f), is marked with a O
symbol in the Pareto-optimal front of Fig. 6. This individual reduces the maximum temperature by approximately 84 K.
Fig. 7(f) shows how the fluid is pushed from the inlet to the upper surface where the uniform heat flux is applied. Along
the upper surface, the flow seems to be uniformly distributed. Then the flow is collected in the other side of the domain
and taken to the outlet. Note the absence of microchannels in the interior of the domain, demonstrating that no network
is required in this region to minimize the temperature. Referring back to Fig. 6, it can be seen that this individual has a
low value of the flow efficiency objective function ¢;. Dividing the flow in the upper surface has the effect of reducing
the amount of energy needed to drive the flow, with the penalty of increasing the void volume fraction. Thus, this individual
has also a high value of ¢,,. It is worth mentioning that the candidate solutions that minimize ¢, and ¢, shown in Figs. 7(d)
and (e), respectively, have a similar value of the flow efficiency objective function. Thus, for the dense network the division of
the flow in several paths compensates the increase in length, thus maintaining a low value for the pressure drop between
inlet and outlet locations.
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Fig. 6. Pareto-optimal surface at generation t = 10000 for the periodic cell example. Individuals selected for visualization are displayed in Fig. 7 and are
labeled in the front and marked with <, O, O symbols.

Fig. 7. Selected candidate solutions at generation t = 10000, marked in the Pareto-optimal front of Fig. 6 with <, O, and O symbols. The upper row shows
the temperature field, whereas the figures in the lower row show the corresponding flow field with their corresponding network. Figures (a) and (d)
correspond to the individual that minimizes ¢,, figures (b) and (e) to the individual that minimizes ¢; and figures (c) and (f) to the one that minimizes ¢;.
Arrows are size-coded according to flow magnitude.
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4 mm

20 mm

Fig. 8. Schematic of the mathematical model for the localized heating example, showing the domain Q and the microvascular network template G used in
the optimization process. Arrows show the location of the inflow and outflow for the flow problem. For the heat boundary value problem, a localized heat
flux q is applied in two locations over the top surface.

6.2. Microvascular fin with localized heating

Consider the domain Q = (36 x 20 x 4) mm?, confined by the rectangular cuboid shown in Fig. 8. For this problem, the
microvascular network template is aligned along a 2D m x n grid over the specimen’s plane of symmetry that is parallel
to the main surfaces. Thus, the network has m + n + 2mn channels, plus a couple used to connect with the flow boundary
locations. With m = 34 and n = 18, there are a total of 1278 microchannels. As in the previous problem, all microchannels
have a length L, = 1 mm, and the polymeric component has a cover of roughly 1 mm in each side over the plane of the net-
work, and a cover of 2 mm in the direction perpendicular to its plane. A diameter set D[um] = {0,100} is used throughout
the optimization process, resulting in 2'?’® network configurations. For the flow boundary value problem, a single prescribed
mass inflow rate of water s = 1 g/min and zero pressure are considered as boundary conditions, and their locations are
displayed in the figure with arrows. The coolant properties are the same as those given in the previous example. Regarding
the solution of the thermal boundary value problem, the rectangular cuboid is discretized using a structured mesh of eight-
node brick elements, with a total of 72 x 40 x 8 = 23040 finite elements and 26937 nodes. Thus, this example contains a
much larger number of elements compared to the periodic microvascular cell problem studied in the preceding example.
A heat flux g is applied locally as displayed in the figure to the free surface of eight finite elements, i.e., to four elements
per localized heat source. Convective boundary conditions, with ambient temperature u,, = 293.15 K and heat transfer coef-
ficient h = 1.78 W/m?K, are prescribed along every surface of the domain that does not contain the applied heat fluxes. The
surface that contains the applied heat flux is considered insulated in the portions that do not contain the heat flux. The 3D
temperature field given in Fig. 9 is our reference solution in the absence of flow for the optimization process. The value of the
prescribed inlet fluid temperature is it = 283.15 K.

287 m— e 369 u, K]

Fig. 9. Temperature distribution in the absence of flow for the thermal boundary value problem shown in Fig. 8, taken as the reference temperature field for
the full 3D GA optimization.
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Fig. 10. Pareto-optimal surface at generation t = 5000 for the localized heating example. The optimization is carried out using the 3D finite element model
illustrated in Fig. 9. Selected candidate solutions are displayed in Fig. 11 and are labeled in the front and marked with <, O, O symbols.
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Fig. 11. Selected individuals for the localized heating example obtained with the conventional GA scheme after 5000 generations with a population size
| P |=1000. The figures show the temperature field at the surface opposite to where the localized heat sources are applied, and their corresponding
networks and flow fields projected on this surface. The temperature range is defined as the minimum and maximum temperature values in the figures. The
candidate solutions shown in Figures (a), (b), and (c), minimize objective functions ¢,, ¢;, and ¢, respectively.
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Two approaches are considered to optimize the microvascular network: The first one considers a full 3D optimization, i.e.,
the thermal boundary value problem is solved using the finite element model used to obtain the temperature field displayed
in Fig. 9. The second one uses the aid of a 2D optimization by exploiting the two-dimensional nature of the microvascular
network template. In other words, a 2D GA optimization can be carried out, and the resulting population from the evolution
process can then be used as the starting population for a 3D optimization. Thus, the starting population of the 3D optimi-
zation is not random anymore, so particular features about optimal solutions are incorporated into the optimization. This
type of optimization belongs to the aforementioned category of knowledge-based GAs.

For the full 3D optimization, a population size | 7 |= 1000 is used, and the NSGA-II results at generation t = 5000 are dis-
played in Fig. 10. As before, the front is projected into three orthogonal planes to ease the visualization. Because the evalu-
ation of the population at a particular generation is proportional to the evaluation time of the individual objective functions,
and because of the large finite element mesh used to solve this problem in 3D, the total computational time is dramatically
increased with respect to the solution of the previous problem. Three individuals on the front, marked with <, O, and O sym-
bols, are displayed in Fig. 11. The selected individuals show the temperature field over the boundary surface opposite to
where the localized heating is applied, together with their corresponding network and flow field. Arrows in the figure are
again scaled according to the magnitude of the flow. The individual shown in Fig. 11(a) minimizes the value of ¢, in this
generation. Clearly, this solution approaches the optimal configuration for this objective function, which connects the inflow
and outflow with a straight path. The candidate solution presented in Fig. 11(b) maximizes the flow efficiency, and it has a
very dense network structure, resembling as before that of the microvascular network template. Finally, the individual in
Fig. 11(c) minimizes the maximum temperature objective function ¢;. It can be noted that the flow is spread close to the
hot spots.

For the second set of results, the thermal boundary value problem is solved using a 2D structured finite element discret-
ization of the main surface, with 5760 three-node elements and 2993 nodes. The applied heat flux is scaled in order to match
the maximum temperature field in the heated substrate. The 2D evolution uses a population size | 7 |= 3200 and the se-
lected individuals at generation t = 10000 that minimize objective functions ¢,, ¢;, and ¢; are displayed in Fig. 12. It is
worth mentioning that considerable computational time savings are obtained from using a 2D solution for the thermal

imges
":}

(b)
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Fig. 12. Figures (a), (b), and (c) show the selected individuals at generation t = 10000 of the 2D optimization, minimizing ¢,, ¢;, and ¢, respectively.
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Fig. 13. Candidate solution that minimizes the maximum temperature objective function ¢ for the knowledge-based GA optimization that started with the
evolved population at generation t = 9900 of the 2D optimization. The figure shows the temperature field in the surface located away from the application
of the heat sources.

boundary value problem, as the latter optimization resulted roughly in 3% of the total time spent by the full 3D optimization.
Note also that for the 2D optimization, the number of generations were doubled and that a much larger population size was
used. The individuals that minimize ¢, and ¢, objective functions, shown in Figs. 12(a) and (b), are similar to those shown in
Figs. 11(a) and (b). However, the candidate shown in Fig. 12(c) is remarkably different. As in reference [2], the flow is col-
lected into a single path of microchannels that pass through the two hot regions of the domain. The maximum temperature
in the 3D computational model considering the network of Fig. 12(c) is umax = 327.9 K. On the other hand, the individual
shown in Fig. 11(c) seems to distribute the flow close to the hot regions, so it would seem that this solution is not the most
effective in cooling down the polymeric component. Nevertheless, the maximum temperature in the polymeric component is
Umax = 326.2 K, which is 1.7 K below the earlier temperature value.

The 2D population at generation t = 9900 is now taken as the starting point for the 3D optimization, and the algorithm is
evolved only 100 generations. The candidate that minimizes ¢; at generation t = 10000 for this knowledge-based evolution
is illustrated in Fig. 13. This solution has a maximum temperature that is only 0.162 K higher than the individual in Fig. 11(c).
Thus the network displayed in Fig. 12(c) is not the most optimal one at minimizing the maximum temperature objective
function ¢. Because the heat sources are applied at a plane parallel to that of the microvascular network template, and be-
cause of the diffusion of the heat that spreads the hot regions at the plane of the network, the optimal solutions from 2D and
3D cases are remarkably different. However, it is worth noting that a Pareto-optimal front can be obtained faster with the aid
of a 2D optimization in these cases.

7. Conclusions

This work has extended the framework presented by the authors in [2] to the optimization of three-dimensional micro-
vascular flow networks embedded in polymeric materials. The approach has combined the NSGA-II optimization scheme
with a finite element solver used to predict the impact of the embedded network on the thermal field in the microvascular
component. A validation study aimed at closing the gap between experimental measurements and computational predic-
tions. It was shown that the mathematical model used to represent the cooling at microchannels was able to predict cooling
effects with the same order of magnitude as those obtained experimentally. However, discrepancies were observed, mainly
because of the lack of data for the fluid temperature at inlet locations. Other objective functions have included the flow effi-
ciency and void volume fraction of the network of microchannels.

A drawback of the proposed method is undoubtedly its computational cost, as the objective functions associated with the
population members need to be evaluated at every generation. However, the computation of these objective functions is
embarrassingly parallel, and the implementation of the framework on distributed memory architectures results in almost
ideal speed-up. The results showed that the trade-offs among competing objectives were accurately captured in a Pareto-
optimal front, from which the analyst can readily determine the candidate solution that suits a particular problem. However,
while the optimum solutions along the Pareto front were readily obtained, these candidate solutions alternated locations
over the front in subsequent generations. Furthermore, because of the crowding distance parameter [16], the algorithm
could exchange optimal solutions in tightly crowded areas for non-optimal solutions. To circumvent this drawback, the
NSGA-II could be swapped by other multi-objective evolutionary strategy [28].

Despite these issues, the NSGA-II optimization scheme adopted in this study has proven to be a viable alternative for the
multi-physics design of these materials, by considering a set of objective functions associated with different physical phe-
nomena. No further complexity is introduced to the framework by adding objective functions or constraints, and the meth-
odology presented can accommodate an arbitrary number of them.

Two applications have been considered in this work. The first one involved a periodic microvascular cell that is part of a
larger polymeric component subjected to a uniform heat flux. In the second application, which focused on the design of a
microvascular fin with a planar embedded network, it was shown that the results of a 2D optimization can be used to speed
up the more complex and computationally intensive 3D optimization. This methodology, referred to as knowledge-based GA,
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incorporated knowledge about optimal topologies into the starting population chosen among the evolved population of a 2D
optimization. This application showed that, while not fully optimum, the results of the knowledge-based GA are close to
those provided by the conventional GA optimization, for which the population was chosen randomly.
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